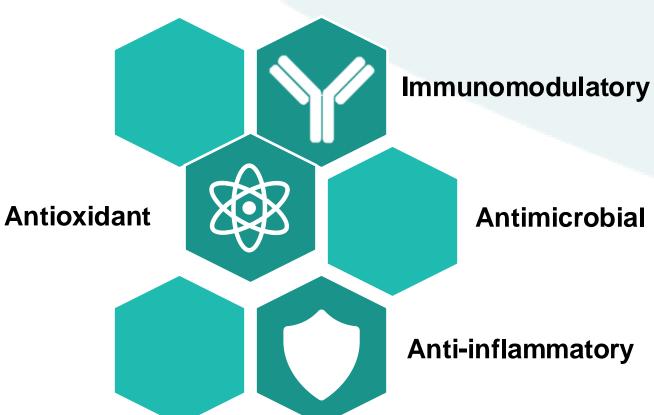

IMPACTS OF DIETARY ALGAE SUPPLEMENTATION ON TURBOT POSTLARVAE PERFORMANCE

INTRODUCTION

Turbot (*Scophthalmus maximus*) is a fastgrowing flatfish that has been commercially cultured for more than two decades.


Several **constraints** remain in the mass production of **high-quality larvae**

Variable survival rates

High sensitivity to external conditions

Nutrition in the early stages is a key factor that tremendously impacts the growth, survival, and health status of fish larvae/post-larvae and later in fish life.

Algae has proven to be a rich source of structurally diverse and complex compounds know to display numerous interesting bioactive properties.

GreenCoLab Joining the pieces

in algal biotechnology.

Xavier, Maria João¹
Engrola, Sofia²
Teodósio, Rita²
Pereira, Hugo¹
Pinto, Wilson³
Conceição, Luís³
Gonçalves, Ana Teresa^{1,3}

AIM: To evaluate dietary supplementation of micro- and macroalgae biomasses on fish antioxidant response and epithelium integrity to improve responses to the current challenges of marine hatcheries

MATERIALS & METHODS

Growth trial:

- Duration 28 days
- Species Turbot (*Scophthalmus maximus*)
- Age at start 51 days after hatching (DAH)
- Culture system Recirculating aquaculture system (RAS)

Treatments:

Fish were fed one of the four experimental diets:

CTRL

Commercial-like diet

GRAC

Commercial-like diet + *Gracilaria gracilis (broken cells)*

NANNO

Commercial-like diet + *Nannochloropsis sp. (broken cells)*

Commercial-like diet + blend of the two algae

RESULTS & DISCUSSION

Analysis:

At the end of the growth trial fish were sampled to assess:

Zootechnical parameters

- Final body weight
- Survival rate
- FCR
- RGR

Gene expression – RT-qPCR

- Tissue Anterior intestine
- Analyse key biomarkers of fish health and robustness

• Growth performance indicators

similar

diet

were

to

treatments

BLEND

and survival of turbot post-larvae

difference from CTRL mainly due to

the upregulation of genes related

(CAT and SOD2) and gel-forming

mucins (*Mucin2*) in the intestine.

primary antioxidant defences

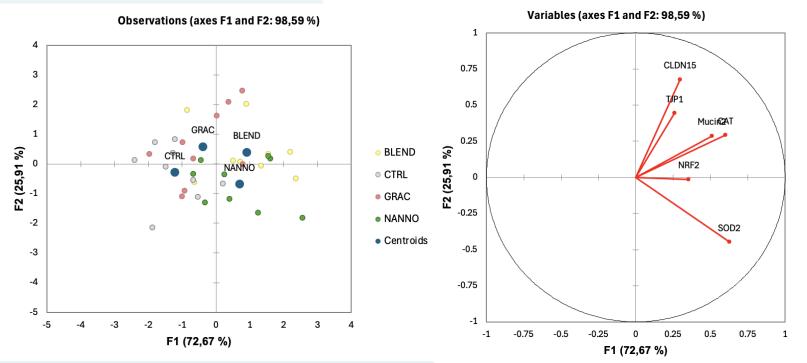
between

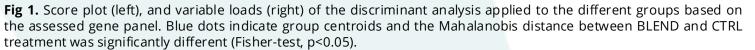
promotes

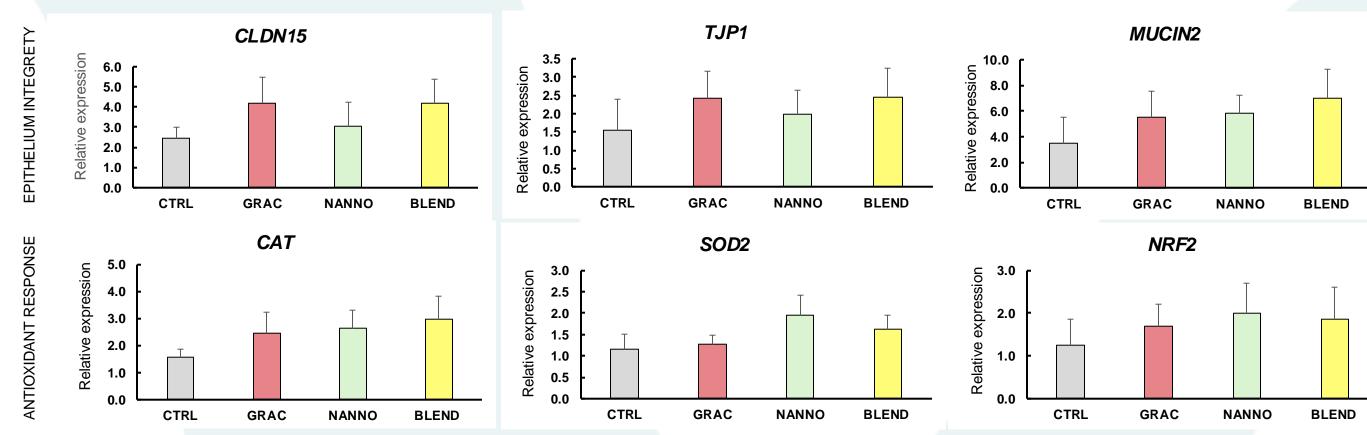
dietary

overall

²CCMAR, Faro, Portugal


³SPAROS Lda. Olhão, Portugal




ALCAE vertical

Acknowledgments

This work was financially supported by "Pacto da Bioeconomia azul" (Project No. C644915664-0000026) within the WP5 Algae Vertical, funded by Next Generation EU European Fund and the Portuguese Recovery and Resilience Plan (PRR), under the scope of the incentive line "Agendas for

Fig 2. Relative expression of biomarkers related to epithelium integrity and antioxidant response - *Claudin 15* (*CLDN15*), *Tight junction protein 1* (*TJP1*), *Mucin 2* (*MUCIN2*), *Catalase* (*CAT*), *Superoxide dismutase* 2 (*SOD2*) and *Nuclear factor erythroid 2- related factor 2* (*NRF2*) in gilthead seabream intestine fed different dietary treatments. Values are expressed as mean ± SE. No differences were observed between dietary treatments (One-way ANOVA, p>0.05)

CONCLUSIONS

Overall, this work provides evidence that dietary **supplementation of** *Gracilaria gracilis* **and** *Nannochloropsis* **sp.** (broken cells) blend could be a nutritional strategy to **enhance marine fish larvae' robustness** at early life stages of development. The scope of the incentive line "Agendas for Business Innovation" through the funding scheme C5 - Capitalization and Business Innovation. Funding of CCMAR through FCT – Foundation for Science and Technology through projects UIDB/04326/2020 (DOI:10.54499/UIDB/04326/2020), UIDP/04326/2020 (DOI:10.54499/UIDP/04326/2020), and LA/P/0101/2020 (DOI:10.54499/LA/P/0101/2020)

