

EFFECTS OF SEAWEED INTEGRATION INTO RECIRCULATING SHRIMP AQUACULTURE

Daan van Hurck*1, Matea Čavlović1, Mieke Eggermont1, Wout Janssen2 ¹Zilt, Boksteen aquaculture, <u>daan@zilt.eu</u> - ²Aquaculture & Artemia Reference Center, Ghent University

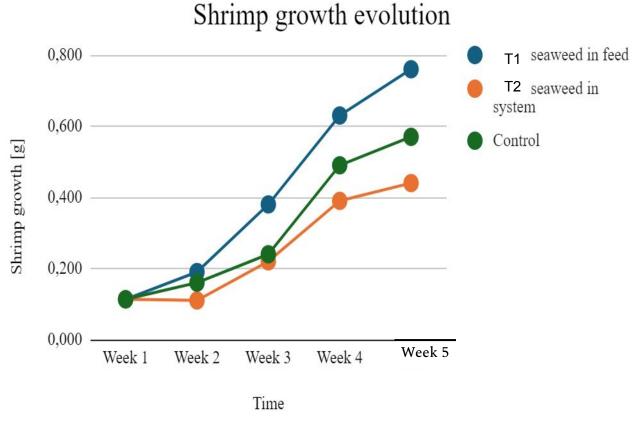
Introduction

- → 3 recirculating aquaculture systems (RAS)
- → 95% water reuse
- → Daily water quality monitoring

Aim

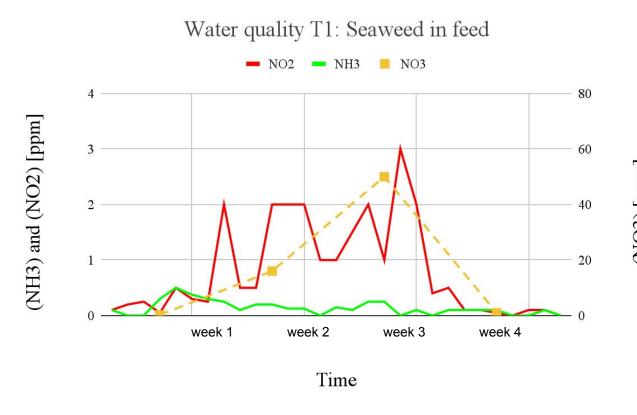
- → Effect of integrated culture of Caulerpa lentillifera with shrimp *L. vannamei* in RAS
- → Feeding trial to test the nutritional nutraceutical properties of seaweed and their implications on the shrimp microbiome

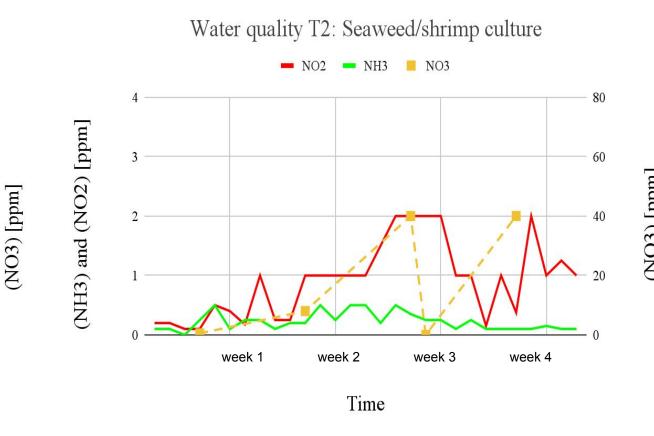
Feeding trial

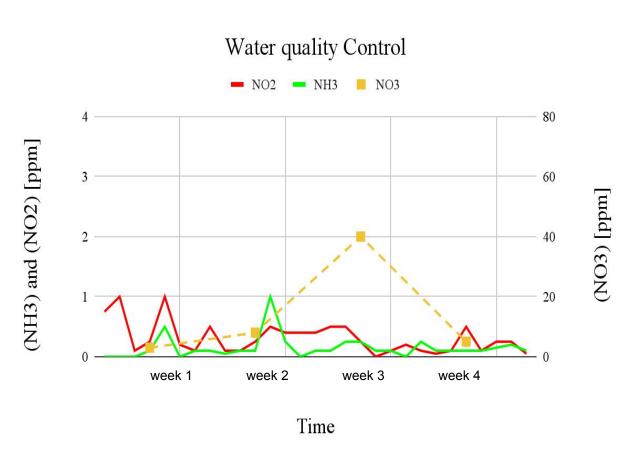


Results

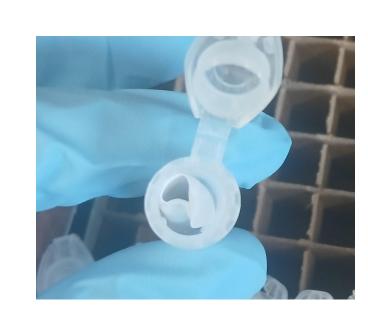
Shrimp growth 0,800 0,600




Shrimp survival @density of 1sh/3L


T2: seaweed/shrimp culture	100% survival	Counted end	Survival rate	
IMTA Tank 1	965	939	97.31%	
IMTA Tank 2	965	706	73.16%	÷
Average			85.23%	
T1: seaweed in feed	100% survival	Counted end	Survival rate	
Feed Tank 1	131	51	38.93%	
Feed Tank 2	131	50	37.31%	
Feed Tank 3	131	107	79.85%	
Feed Tank 4	131	60	45.80%	
Average			50.47%	

Water quality

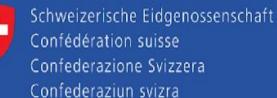

Following steps:

- → Analysis of microbiome modulation in shrimp (hepatopancreas and gut)
- → Analysis of culture water
- → Metagenomics and untargeted metabolomics using the BlueRemediomics Discovery Platform (aided by EMBL) and water analysis using MS to understand the exometabolome (Partners)
- → Further analysis of performance data (ZILT)

Hepatopancreas and gut dissection

Culture water sample collection

SOCIAL MEDIA


the European Union

BlueRemediomics is funded by the European Union under the Horizon Europe Programme, Grant Agreement No. 101082304. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.

UK Partners on BlueRemediomics are supported by UK Research and Innovation (UKRI) under the UK Government's Horizon Europe funding guarantee Grant No. IFS 10061678 (University College London); IFS 10055633 (The Chancellors Masters and Scholars of the University of Cambridge); IFS 10057167 (University of Aberdeen).

Project funded by

The Swiss Partner (Eidgenoessische Technische Hochschule Zuerich) on BlueRemediomics has received funding from the Swiss State Secretariat for Education, Research and Innovation (SERI) under Contract No. 22.00384.

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

