Innovative Genetic Approaches for Sustainable Aquaculture: Unveiling Sex-Specific Markers and Neo-Y Chromosome Evolution in Spotted Knifejaw (*Oplegnathus punctatus*)

Ming Li^{+, 1, 2, 3}, Rui Zhang ^{+, 4}, Guangyi Fan ⁴, Wenteng Xu ^{1, 3}, Qian Zhou ^{1, 3}, Lei Wang ^{1, 3}, Wensheng Li ⁵, Zunfang Pang ⁵, Mengjun Yu ⁴, Qun Liu ⁴, Xin Liu^{*, 4}, Manfred Schartl ^{*, 6, 7}, Songlin Chen^{*, 1, 3}

¹Yellow Sea Fisheries Research Institute, CAFS; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China. ²College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China. ³Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China. ⁴BGI-Qingdao, BGI-Shenzhen, Qingdao, China. ⁵Laizhou Mingbo Aquatic Product Co. Ltd., Laizhou, Shandong, China. ⁶Entwicklungsbiochemie, University of Würzburg, Biozentrum, Würzburg, Germany. ⁷Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.

Introduction

Background:

Spotted Knifejaw (Oplegnathus punctatus) is a commercially valuable fish species with complex sex chromosome systems (X1X2Y). Understanding its genetic and genomic architecture is crucial for sustainable aquaculture

practices.

Objectives:

To identify and validate sex-specific markers. To explore the evolution of neo-Y chromosomes. To analyze differential gene expression related to

sex.

Results

Analysis

Genome Assembly:

One female genome and one male genome Resequencing, SNP Calling, GWAS and Genetic Diversity Analysis

Male Genome and Neo-Y Assembly:

Identification of sex chromosome-specific SNPs, assembly of neo-Y chromosome. *Identification of Y specific Genes Divergence Time Estimation:*

Sequence collinearity and Ks-based methods.

Differentially Expressed Genes: RNA-Seq and PCR validation.

Genomic Assemblies:

High-quality assemblies of male and female genomes.

dentification of neo-Y chromosome and sex chromosome structures.

Sex-Specific Markers:

Discovery of male-specific genetic markers and differential expression patterns.

Neo-Y Chromosome Evolution:

Characterization of neo-Y chromosome and identification of Y+X-genes.

Divergence Analysis:

Estimated divergence times between X/Y chromosomes and comparison with other species. *Functional Insights:*

Identification and validation of sex-specific genes through RNA-Seq and PCR.

Fig. 1 Verification of the male-specific marker

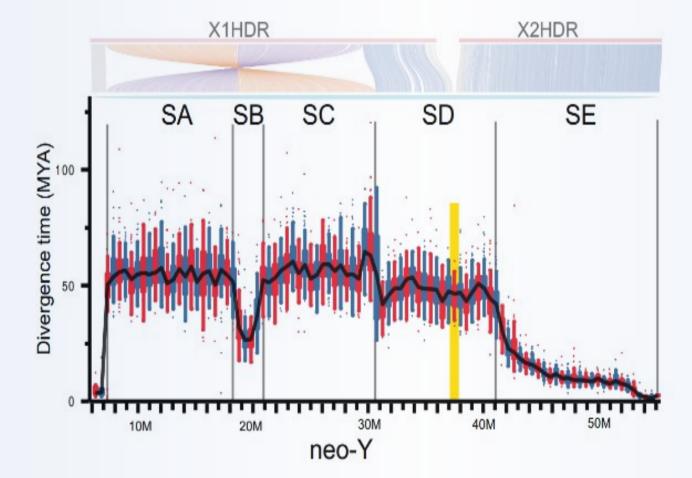


Fig. 2 Divergence times along the neo-Y in a sliding window of 100 kb.

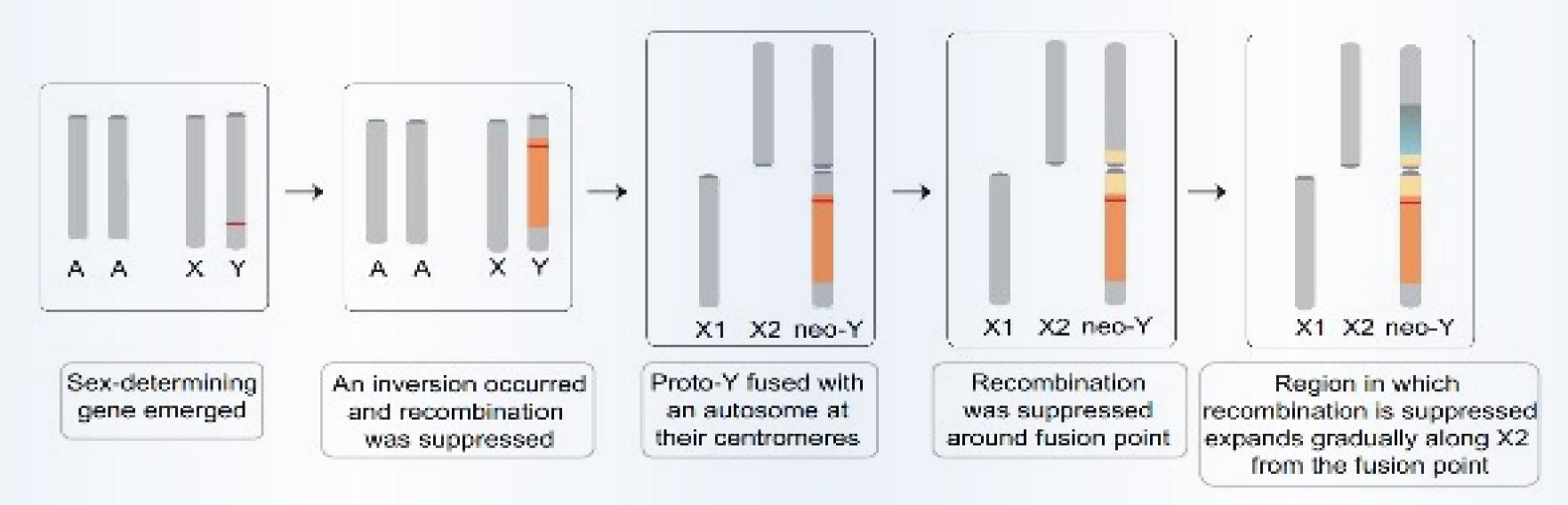


Fig. 3 Model for the evolution of the Y chromosome in spotted knifejaw.

Conclusion

The study provides valuable genomic and transcriptomic insights into the spotted knifejaw, emphasizing advancements in understanding sex chromosome evolution and differential gene expression.

• Implications for Aquaculture:

Findings support sustainable aquaculture practices through enhanced genetic knowledge and sexspecific marker development.

• Future Directions:

Further research on functional roles of identified genes and continued exploration of sex chromosome evolution.