

DEVELOPMENT OF POTENTIAL INTEGRATED MULTITROPHIC AQUACULTURE IN ARGENTINA

Tomás Chalde*, D. Farías, C. lachetti

*Centro Austral de Investigaciones Científicas (CADIC-CONICET). Bernardo Houssay 200, V9410, Ushuaia, Argentina. tomaschalde@conicet.gov.ar

INTRODUCTION & OBJECTIVES

Marine aquaculture in Argentina has been characterized by the development of experimental and pilot-scale projects that have yet to be transformed into commercial ventures. Therefore, holistic planning is needed to impulse sustainable and profitable growth for this activity. Under this framework, we set out to generate data for marine aquaculture planning in Tierra del Fuego Island, focused on the development of IMTA.

RESULTS

Two potential IMTA configurations were described. One comprises the whitebait fish *Galaxias maculatus* and the halophyte glasswort *Sarcocornia magellanica* cultivated in land-based facilities. The other option includes the blue mussel *Mytilus chilensis* grown in longlines with the red sea urchin *Loxechinus albus* cultivated in lanterns. The figure shows the productive cycle of the proposed IMTA.

Location of Tierra del Fuego Island at the south tip of South America and the landscape of the Beagle Channel

Whitebait Galaxias maculatus

Biology	Market
Finfish	Gourmet product
Diadromous	High value
Low trophic	No commercial fisheries
Aquaculture	Limitations
Fed aquaculture	No aquaculture regulations
Land based	
Low biomass	
Seed availability	

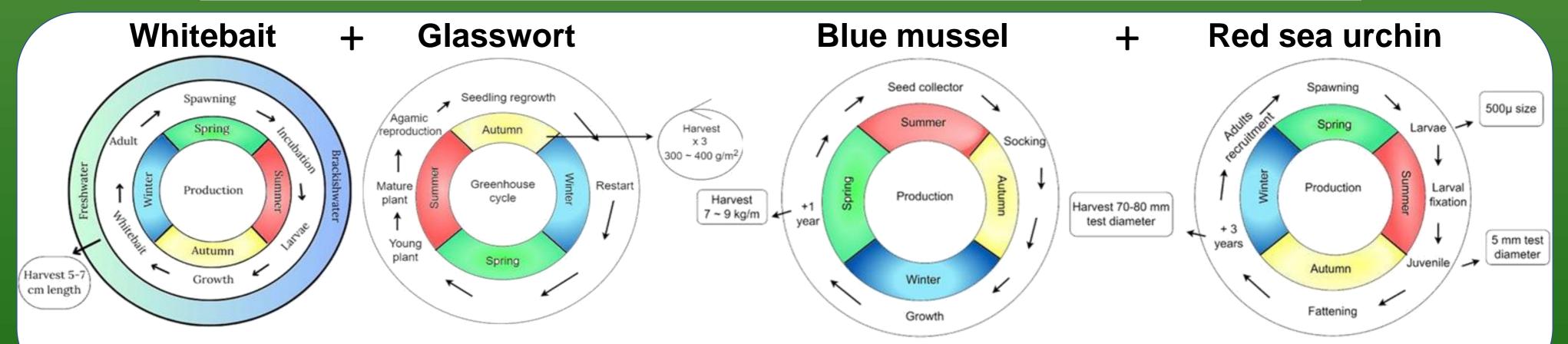
Glasswort Sarcocornia magellanica

Biology	Market
Halophyte	Gourmet product
Perennial	High value
Low trophic	High nutritional value
Aquaculture	Dish topping
Extractive aquaculture	Low artisanal collection
Land based	No commercial fisheries
Low biomass	Limitations
Seed availability	No regulations

Integration

- ✓ Similar salinity
- ✓ Glasswort can be irrigated with waste water of whaitbait
- ✓ Similar temperature
- ✓ Both on land based

Blue mussel Mytilus chilensis


Biology	Market	
Mollusc bivalve	International market	
Planktonic larval	Low value	
Low trophic	Commercial fisheries	
Aquaculture	Limitations	
Extractive aquaculture	Harsh weather	
Open water	Biofouling	
High biomass	Red tide	
Seed availability		
Clear regulations		3/

Red sea urchin Loxechinus albus

Biology	Market
Echinoderm	Gourmet product
Low growth	High value
Low trophic	Low artisanal fisheries
Aquaculture	Limitations
Fed aquaculture	No aquaculture regulations
Open water	No seed availability
Low biomass	
Seed availability	

Integration

- ✓ Same environmental needs
- ✓ The larvae of sea urchin naturally attach to the longlines
- ✓ Sea urchin feeds on biofouling ✓ Both on open water system with the same structures

Theoretical productive cycles of 4 native species of the Beagle Channel identified with high potential for IMTA