

NEW MICROAEROPHILIC ASSIMILATION (BIOFLOC) - MBR BASED RAS

Orel Rahamim¹, Ze Zhu¹, Avner Ronen¹, Eli Aflalo², Dina Zilberg¹, Amit Gross^{1*} ¹Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev, Sde Boker Campus, 84990 Israel (amgross@bgu.ac.il) ²Achava Academic College, 79803 Israel

Introduction:

Assimilation-MBR based RAS is a novel and promising sustainable alternative to conventional RAS:

- ✓ Near zero water exchange.
- Nutrients released into the water are effectively converted into protein-rich microbial biomass, thus mitigating potential environmental pollution.
- Using microbial biomass as a supplementary fish feed: a) reduce the dependence on costly protein sources; b) enhance fish immunity; and c) lower production costs.
- Biofloc quality including its size, composition, and protein content is affected by the: a) external carbon source; b) C/N ratio; and c) redox potential (O₂ level) in the reactor.

Research aim:

Testing and optimizing novel assimilation (Biofloc) based RAS with membrane bioreactor for barramundi fish culture and high nutritional value Biofloc product

System setup:			Methods:
Fish feed		Feeding	Routine water quality analyses:

Results:

Addition of MBR to the system significantly reduced TSS concentration in the fish tank and increased its concentration in the bioreactor

Conclusions:

- The membrane reduced the concentration of TSS in the fish tank.
- The bioflocs meet expectations and exhibit high percentages of protein
- The membrane treatment reduced off-flavor of the fish.

Acknowledgments:

- PRIMA-FrontAg Nexus
- BONA TERRA

