EFFICACY OF NOVEL IMMUNOSTIMULANTS AGAINST INFECTIOUS HEMATOPOIETIC NECROSIS VIRUS (IHNV) INFECTION IN RAINBOW TROUT ONCORHYNCHUS MYKISS

Kikuchi N*1, Matsumoto S², Saitou Y², Samegai Y², Sawabe N¹, Shirai M¹, Anzai H¹, Shibasaki Y¹, Mano N¹ ¹College of Bioresource, Nihon University, ²Scientific Feed Laboratory Co., Ltd.

Rainbow trout Oncorhynchus mykiss is suitable for cultivation in cold waters, and rainbow trout now accounts for 10% of flesh water aquaculture production in Japan. However, since infectious hematopoietic necrosis virus (IHNV) is causing significant mortality in these cultures, many producers are searching for optimal measures to control communicable diseases in an effort to minimize the potential risk of viral infection. Use of **immunostimulants** (IS) may be employed by fish culturists to reduce losses due to IHN in their facilities¹). The present study was designed to investigate on the efficacy of four **novel IS** (lactic acid bacteria types a, b, yeast, and plant extract) against IHNV infection in rainbow trout, and compared them to the efficacy of high-concentration ascorbic acid supplementation (Ishikawa et al., 2013), which has been previously reported to be effective.

Composition of damage amount in Japan's trout farms

Ishikawa et al. (2013) Fish Pathology, 48(4), 113-118

Experiments	Groups	(1	Added IS ng/kg diet)	Feeding trial days	Number of fish per group	Mean weight (g)	AsA concentrations in liver (mg/100g)	Water temperature (°C)	Methods and experimnet parameters
Challenge test for screening of IS	Control (Ctrl) Ascorbic acid (AsA) Plant extract(Pe) Lactic acid bacteria type a (LBa) Lactic acid bacteria type b (LBb) Yeast (Y)		5,000 5,000 500 200 7,000	11 days	20	3	13.6±2.9 21.0±3.6* NM	14±1	✓ Bath exposure for 60 min
Challenge test for evaluation of opitimal concenration	Ctrl AsA LBb 200 LBb 800 Yeast 500 (Y500) Yeast 2000 (Y2000) Yeast 7000 (Y7000)			11 days	20	4	14.46±5.5 26.06±2.8* NM	14±1	using IHNV NT1304 strain (10 ^{4.5} TCID ₅₀ /ml)
Monitoring nonspecific immune responses	Ctrl AsA LBb 800 Y500			11 days	20	20	NM	14±1	 ✓ Plasma lysozyme activity ✓ Serum total IgM concentration ✓ Neutrophil respiratory burst
Effects of long-term supplementation	Ctrl AsA LBb 800 Y500		 5,000 800 500	100 days	20	1	NM	14±1	 ✓ Thermal tolerance test ^a ✓ Growth performace ✓ Histological observation

Experimental designs of the present study

NM: not measured. Asterisk (*) indicates p < 0.05, student's t-test. ^a Test was performed after 100 days of feeding period.

Monitoring nonspecific immune responses

The survival rate of rainbow trout fed either lactic acid bacteria types b or yeast increased against IHNV infection, and they do not induce any adverse effects in rainbow trout. These results indicate that both materials can be used in rainbow trout farms as novel immunostimulants.

