

26-30 August 2024, Copenhagen, Denmark

IN-FEED PROBIOTICS AND WATER BIOREMEDIATION **IMPROVED GROWTH, BIOMASS, SURVIVAL, WATER CHEMISTRY AND MICROBIOTA IN WHITELEG SHRIMP** Litopenaeus vannamei IN VIETNAM

LALLEMAND ANIMAL NUTRITION

Ana Rodiles^{1*}, Eric Leclercq¹, Mathieu Castex¹

¹Lallemand Animal Nutrition, 19 rue des Briguetiers, 31700 Blagnac, France *arodiles@lallemand.com

INTRODUCTION & OBJECTIVE

- Intensive shrimp farming suffers from a lack of predictable production performance inherent to fluctuations in shrimp and water quality.
- The use of antibiotic (ABX) as prophylactic or growth promoter remains frequent, despite increasing awareness on the need for demedication to prevent the development of antimicrobial resistance in particular
- There is a need to better understand the impact of positive bacterial and antibacterial intrants on the functionality of the water microbiota and production performance.

OBJECTIVE

Investigate the benefit of in-feed and water probiotics in comparison to prophylactic antibiotic use during L. vannamei grow-out under commercial-like conditions

MATERIAL & METHODS

✤ Experimental design

- Whiteleg shrimp; SPF, BW: 0.49 ± 0.07g; n = 150/m³
- 4 Treatment in quadruplicate; 16 outdoor tanks (50m³, plastic-lined)
- Pre-treated pumped ashore water 10 ppt; 29°C; pH 7.85; DO > 80% sat. Water exchanged at 20%/4 day from DOC7 to 15 then daily;
- Commercial feed (CP 40%, CL 5-7%; Fiber 4%, 11% moisture)
- Hand-feeding to visual satiation; 4 times daily using feeding trays

Duration: 2 challenge days

(1 group x 5 replicates)

Rearing water:1.2 kg/ha/4 days

DNA sequencing & Bioinformatics:

At end of trial (day 42), 4 water samples per tank collected and pooled n=12

RESULTS

- Growth (Fig. 1, Table 1):
 - Higher growth in LAL or ABX compared to Control (Biomass gain +12%; ADG +15%).

feed each

- Similar growth improvement between LAL and ABX
- Numerically lower survival with ABX (Table 1).
- Significant negative effect of ABX on condition factor (K; Fig. 1).
- Abiotic challenge: survival to an abrupt exposure to FW was higher in LAL and LAL+ABX group with a minor benefit of ABX-only (Fig. 2).

Fig 1. Biomass and K factor (Mean ± SE; P<0.05) Control

Table 1. Growth and feed performance (Mean \pm SD; P < 0.05)

Treatment	Control	ABX	LAL	LAL + ABX
Final body-weight (g)	8.3 ± 0.3 a	9.9 ± 0.2 b	9.5 ± 0.5 b	9.2 ± 0.7 b
Final biomass (Kg)	58.8 ± 1.0 a	64.9 ± 1.8 bc	65.4 ± 1.0 c	61.6 ± 3.5 ab
ADG (g/day)	0.19 ± 0.01 a	0.22 ± 0.01 b	$0.21 \pm 0.01 \mathbf{b}$	0.21 ± 0.02 b
FCR	1.14 ± 0.01 a	1.21 ± 0.05 a	1.21 ± 0.02 a	1.30 ± 0.07 b
Survival (%)	93.0 ± 3.6	87.3 ± 4.3	92.0 ± 4.8	89.9 ± 10.0

Fig 2. Mortality during the abiotic challenge.

THB and LAB counts: ABX promoted higher THBC post-intervention and LAL supported higher LAB in water from DOC 21 towards the end (Fig. 3).

- Water microbiota: ABX had no impact on microbial alpha diversity (Table 2). Discriminant analysis at ASV level identified differences in the water microbial composition between treatments (**Fig. 5**; P < 0.05):
 - Control group had a higher abundance of Microbacteriaceae, Cryomorphaceae and Erythrobacter.
 - LAL group had a higher abundance of *Candidatus Aquiluna* and *Litoricola* and a lower abundance of NS3a marine group and *Izemoplasmatales*
 - LAL+ABX had a higher abundance of Idiomarina.

50 shrimp/tank

(4 groups x 5 reps)

Mortality count and

Every 30 minutes

20 tanks

removal

Stocking density

Nortality checking

Samplin

var.

expl.

5%

3

Component

Total number of tanks

Table	2.	Alpha	diversitv	(Mean	±	SD
		/		(_	00

	Control	ABX	LAL	LAL+ABX
Shannon-index	4.84 ± 0.23	4.89 ± 0.54	4.71 ± 0.55	4.89 ± 0.83
Observed ASVs	107.2 ± 20.6	113.6 ± 23.8	101.6 ± 18.5	107.2 ± 28.8

Fig 6. Relative abundance of Phylum | Family

Functional inference (PICRUSt)

At the end of the trial, the predicted abundance of MCEE, PEPC, GDH and NMO pathways in the water microbiota was reduced in the LAL and LAL+ABX groups (Fig. 7), in accordance with the lower TAN and Nitrite concentration in the water (Fig. 4).

Fig 7. PICRUSt of Carbon fixation pathways in prokaryotes and Nitrogen metabolism at day 42 with

CONCLUSION

Superior benefits of selected in-feed probiotics and water bioremediation strains compared to prophylactic antibiotic use:

POSITIVE EFFECT ON WATER MICROBIOTA & QUALITY

- > Enhanced LAB and lower THB counts in the water
- Enhanced Nitrogen and Carbon cycling
- > Modulation of the bacterial composition towards a more balanced environment:
 - \rightarrow \uparrow Candidatus Aquiluna \uparrow Litoricola (enhanced carbon turnover and nutrient acquisition)
 - \downarrow NS3a_marine group \downarrow Izemoplasmatales \rightarrow (related to dinoflagellates blooms)

POSITIVE EFFECT ON PERFORMANCE

- > Improved shrimp growth, biomass gain and resilience to an abiotic stressor to similar or higher levels than achieved by the prophylactic use of antibiotic
- > No negative impact on nutrition condition (K) unlike when using antibiotics

LAL-solutions (In-feed + water) are a promising nutritional and environmental strategy to secure shrimp health, water quality and stability.

LALLEMANI

LALLEMAND ANIMAL NUTRITION SPECIFIC FOR YOUR SUCCESS www.lallemandanimalnutrition.com