IN SILICO MODEL TO PREDICT COMPATIBILITY IN FISH POLYCULTURE

Simon Lévy, Marielle Thomas, Jean-Michel Mortillaro, Dominique Carval, Thomas Lecocq*

Presenting author: Thomas Lecocq, University of Lorraine, INRAE, L2A, Nancy, France. thomas.lecocq@univ-lorraine.fr

Context

- Polyculture can help to improve the sustainability of aquaculture but to be effective, species need to be compatible^{1,2}
- In Cambodia, rearing species in ponds are not controlled and so not big in term of production
 - → We need to develop controlled polyculture with compatible species to increase fish production and sustainability in this region

Polyculture: Rearing of two or more fish species at the same time¹

Institut des Sciences de l'Evolution-Montpellier J GECCO INRAO U UNIVERSITÉ

Fish compatibility: able to live in the same system without detrimental interaction and with a minimized competition¹

Objective

Objective: Determine the most compatible 2-4 species combination to put into ponds with associated species and tilapia cages?

Method		Results			
STEP 1 BUILD A FISH SPECIES LIST	 <u>Conditions</u>: Live in Cambodia Used in aquaculture in Asia Available to perform 	Selection of 15 species	1925 possible combinations of 2 to 4 species	Impossible to test empirically all of the combinations In silico	
STEP 2 REMOVE COMBINATIONS WITH PREDATION	You're too big for me, I can't eat you!	926 possi	- 48% of combinations 926 possible combinations of 2 to 4 species		

References:

¹Thomas, M., Pasquet, A., Aubin, J., Nahon, S., & Lecocq, T. (2021). When more is more: taking advantage of species diversity to move towards sustainable aquaculture. *Biological Reviews*, 96(2), 767–784. https://doi.org/10.1111/brv.12677 ²Lecocq, T., Amoussou, N., Aubin, J., Butruille, G., Liarte, S., Pasquet, A., & Thomas, M. (2024). Stronger together: A workflow to design new fish polycultures. *Reviews in Aquaculture* (Vol. 16, Issue 3, pp. 1374–1394). John Wiley and Sons Inc.

