

NATURAL ANTI-PARASIDIC AND ANTI-MICROBIAL INGREDIENTS SOLUBILIZED BY A NATURAL SOLUBILIZER FOR CONVENTIONAL AND ORGANIC AQUACULTURE APPLICATIONS

Zhijun Liu, School of Renewable Natural Resources, LSU Agricultural Center, Phone: 225-578-4214; Email: zliu@agcenter.lsu.edu, Baton Rouge, LA 70803 USA

The Demand

- Many essential oils are antiparasitic and anti-microbial.
- Tea Tree Essential Oil (TTEO) and Clove Bud Essential Oil (CBEO) are two.
- However, oils do not disperse in water.
- Enhancing solubility enables dispersion and access to pathogens.

The Method

- Load essential oils in the SG micelles.
- Disperse the loaded SG micelles in water.
- Create concentrations that are effective against bacterial pathogens.
- Maintain physical and chemical stability of the loaded micelles for extended treatment windows.

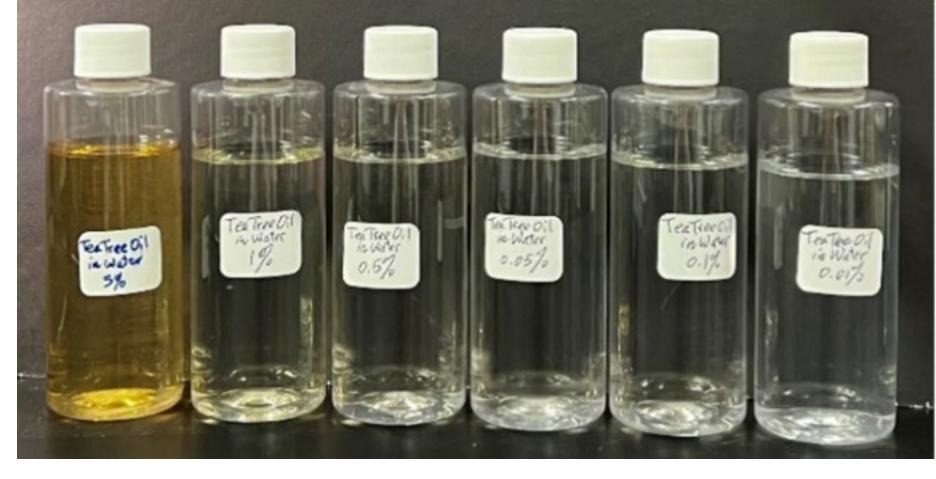


Fig. 2. Water-dispersible Tea Tree Essential Oil (TTEO) concentrate and its dilutions enabled by a botanical solubilizer. They were stable and free from organic solvents, emulsifiers, or chemical preservatives.

The Problems and Solutions

- Active ingredients (ai) are often discovered involving DMSO or ethanol.
- Translating to real-world applications are harder after removing organic solvents.
- Replacing them with naturally occurring compounds to act as solubilizers creates viable solutions.
- Steviol glycosides (SG) isolated from plants of *Rubus* suavissimus and Stevia rebaudiana are some (Fig. 1).
- SG forms micelles in water.

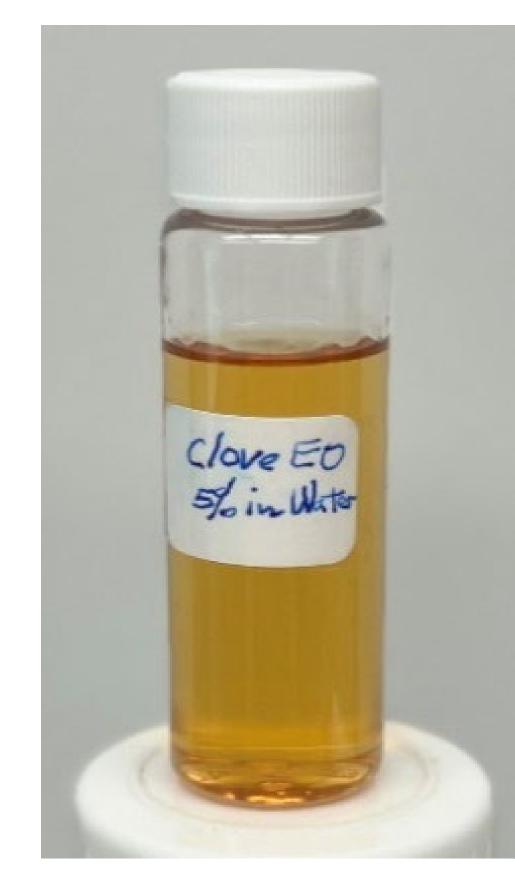


Figure 2. Water-dispersible Clove Bud
Essential Oil (CBEO)
concentrate enabled by a
GRAS botanical
solubilizer. It is freely
dilutable without losing
clarity. CBEO is one of
the most potent antimicrobial essential oils.

Rubus suavissimus The sweet leaf tea plant Photo by Zhijun Liu Rubusoside

The structure of rubusoside, one of the steviol glycosides (SG) found in the plant *Rubus suavissimus* and *Stevia rebaudiana*.

The significance

Rubusoside dispersed essential oil compounds in water. Anti-parasitic and anti-microbial properties are maintained in the micelles. Overcoming poor solubility enables accurate aquatic studies and seamless transition to efficacy and toxicity applications. Being a GRAS is ideal for food and organic aquaculture.

The Impacts

- TTEO and CBEO were each dispersed to a 5% concentrate (Fig. 2 and 3).
- Dilutable to as low as 0.01% without losing clarity (Fig. 2).
- The wide range of clear dilutions from 50,000 ppm to 100 ppm allows accurate dosing design for achieving anti-parasitic and anti-microbial efficacy.
- CBTO was 10-fold more potent than TTEO for anti-microbial uses.
- The two concentrates are freely miscible, enabling combination of terpene and phenolic classes.
- The solubilizer is generally regarded as safe (GRAS) by the US FDA.
- Clean-label products can be built by using water-dispersible TTEO and CBEO ingredients.
- Immersion in TTEO at 40 ppm (0.004%), for example, was reported effective against the parasitic Dactylogyrus spp.
- Both the concentrate and its dilutions were stable physically (no separation), chemically (no degradation), physiologically (across pH from 1.8 to 8), and biologically (no microbial growth).
- Obtaining samples for evaluation toward collaborative development is open.