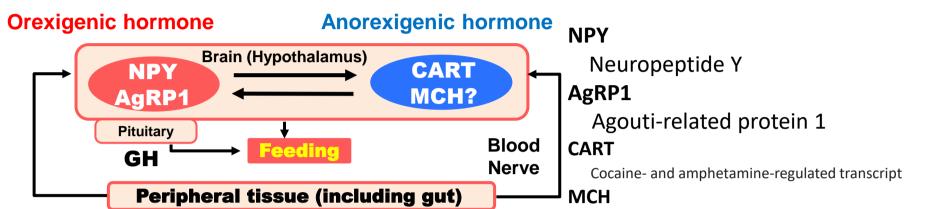
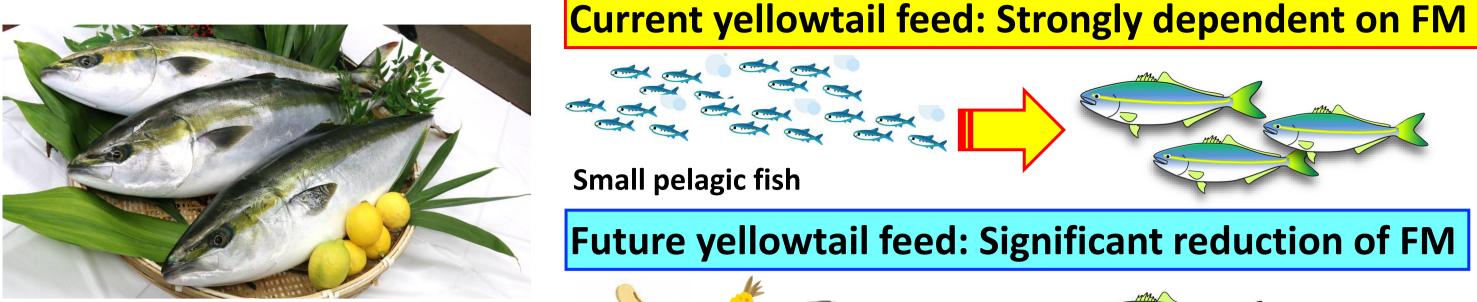

SUPPLEMENTING A LOW-FISH MEAL DIET WITH FISH MEAL SOLUBLE FRACTION IMPROVES GROWTH PERFORMANCE AND DIGESTION IN YELLOWTAIL Seriola quinqueradiata 高知大学 国立研究開発法人

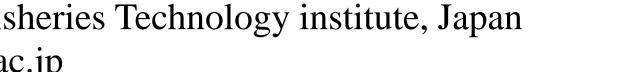
Haruhisa Fukada^{1,*} and Ayaka Senzui²

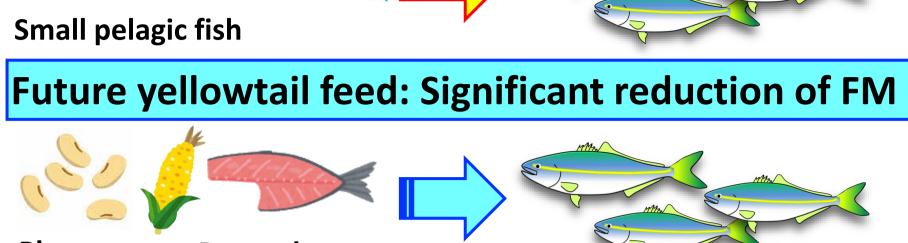
¹Faculty of Agriculture and Marine Science, Kochi University, Japan

² Physiological Function Division, Aquaculture Research Department, Fisheries Technology institute, Japan Fisheries Research and Education Agency E-mail: fukaharu@kochi-u.ac.jp

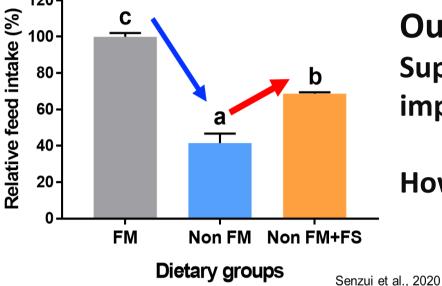

Introduction



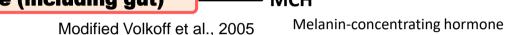

Yellowtail (Japanese amberjack) Seriola quinqueradiata


- A marine carnivorous fish
- The most popular aquaculture fish in Japan
- Seriola sp. are becoming important targets for aquaculture all over the world.
- Fish meal (FM) is a major dietary source (30-50% in diet) for yellowtail.

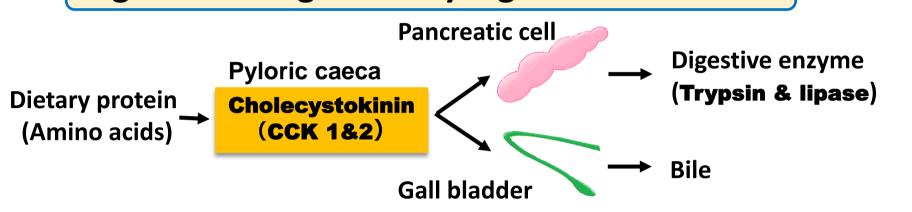
Appetite is regulated by appetite-related hormones.



- **Plants** By products


Need to reduce dependence on FM

 \Rightarrow But there are many problems (e.g., reduced feed intake).



Our previous study (Senzui et al., 2020) Supplementation of feeding stimulant (FS) improved feed intake in yellowtail!

How about FM soluble fraction (FMS)?

Digestion is regulated by digestive hormones.

Supernatant

FMS

400mL

Used

diet

rightarrow for 1 kg


Materials & Methods

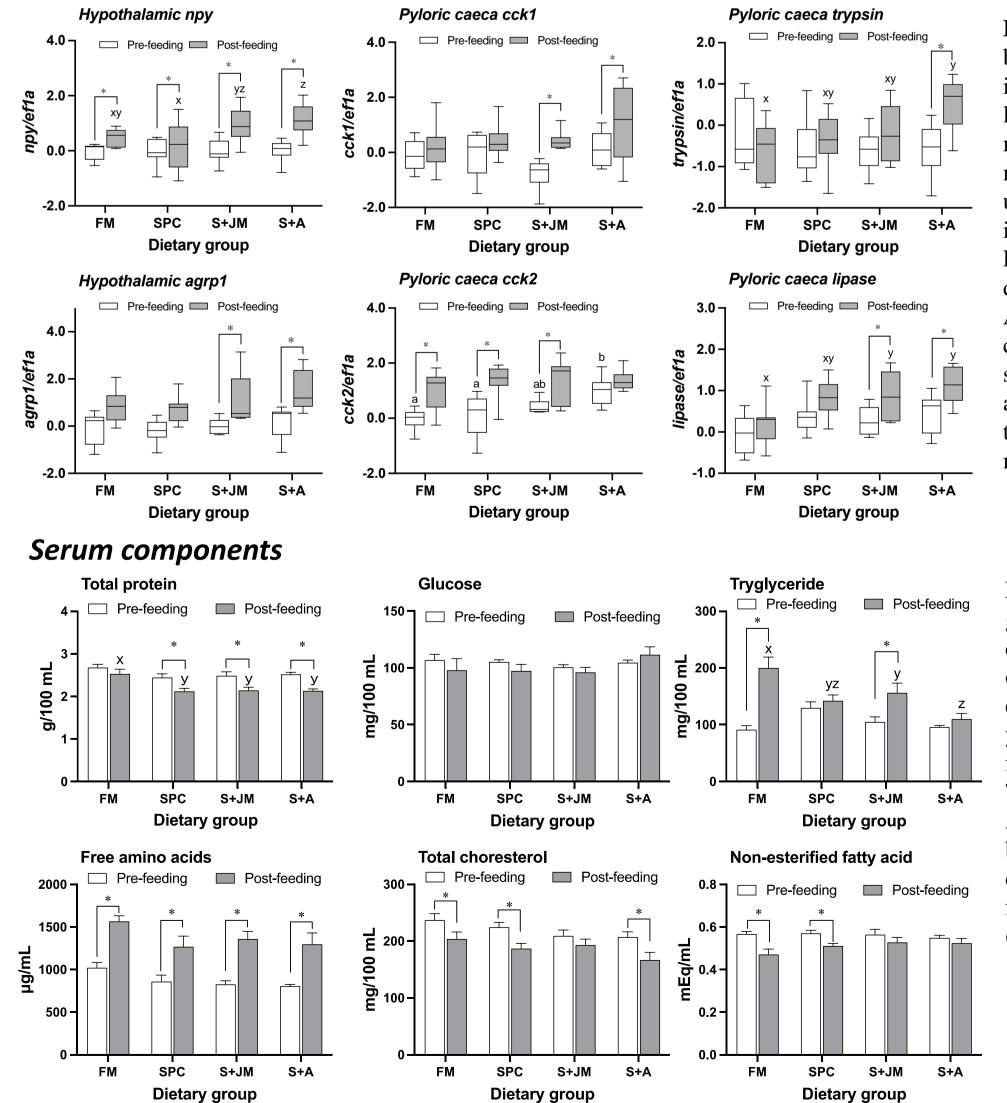
Preparation	

Feeding stimulant (FS) for yellowtail

Alanine	1.1 g	
Proline	1.8 g	Included in 1 kg of diet
IMP	2.1 g	*IMP= Inosine 5'-monophosphate disodium salt

FM soluble fraction (FMS)

600 mL Chilian jack mackerel **Peruvian anchovy**

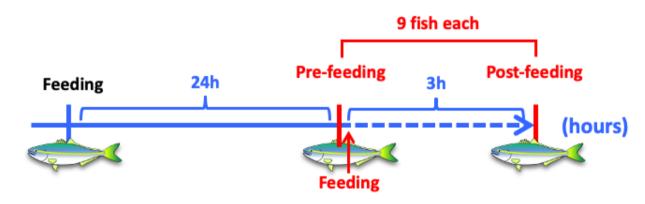


Body weight

Table 1. Composition of	of experiment	al diets		
	FM	SPC	S+JM	S+A
Anchovy meal	650	150	150	150
Soy protein concentrate	0	560	560	560
Algae meal	0	20	20	20
Krill meal	50	50	50	50
Pollock oil	50	80	80	80
Taurine	0	40	40	40
Methionine	0	10	10	10
Others	250	90	90	90
Total	1000	1000	1000	1000
Solution for making diet (400mL)	water	water	FMS (Chilian jack mackerel)	FMS (Peruvian anchovy)
Crude protein (%)	55.0	57.1	57.7	57.0
Crude lipid (%)	10.4	11.7	11.6	11.4
Free Ala (mg/kg)	670.4	209.0	228.1	239.7
Free Pro (mg/kg)	227.8	126.9	129.0	146.6
IMP (mg/100 g)	37	53	56	58

Gene expressions

Purpose of this study


Growth performance in feeding trials and the gene expression of appetite-related hormones, digestive hormones, and digestive enzymes with supplementation of FS and FMS to low-FM diet were evaluated.

Experimental condition

 Yellowtail (initial average weight=40.0 g) Rearing condition 15 fish/1,100 L FRP tank 4 dietary group \times 3 replication = 12 tanks Once/day (Satiation), 6 days/week Feeding Dec 18th – Feb 18th (9 weeks) Duration $19.7^{\circ}C \Rightarrow 16.4 {\circ}C$ Water temperature

Sampling

Collecting blood and hypothalamus

Fig. 2. Relative expression of target genes before and after feeding (n=7-9). Boxes indicate the 1st and 3rd quartiles. The vertical lines (whiskers) represent the maximum and minimum values. The central line marks the median. All measurements were standardized using efla expression levels. Different letters indicate significant difference (P < 0.05). Lowercase x, y, and z indicate significant difference in post-fed fish using two-way ANOVA followed by Tukey's multiple comparison test (P < 0.05). Asterisks indicate significant differences between pre-feeding and post-feeding of same dietary group using two-way ANOVA followed by Sidak's multiple comparison test (P < 0.05).

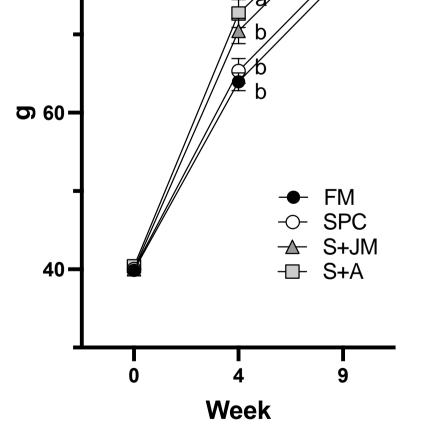


Fig. 1. Changes in average body weight (mean \pm standard error, n = 3). Different letters indicate significant differences in twoway ANOVA followed by Tukey's multiple comparisons test (P < 0.05).

Growth performance

	FM	SPC	S+JM	S+A
Feed efficiency (%)	42.1	50.0	54.2	52.9
Feed intake (g/fish)	89.7	77.7	82.3	86.6

Conclusion

Fig. 3. Serum concentrations of total protein, glucose, triglyceride, free amino acids, total cholesterol, and non-esterified fatty acid after one week. Vertical lines represent standard error of the mean (SEM; n = 9). Lowercase x, y, and z indicate significant difference in postfed fish using two-way ANOVA followed by Tukey's multiple comparison test (P < 0.05). Asterisks indicate significant differences between pre-feeding and post-feeding of same dietary group using two-way ANOVA followed by Sidak's multiple comparison test (*P* <0.05).

- FMS supplementation of the low FM diet improved growth performance.
- FMS supplementation improved response of orexigenic hormones, but opposite response compared to our previous studies.
- FMS supplementation improved response of digestive hormones and digestive enzymes.
- FMS contains important substances that stimulate physiological responses (appetite and digestion) in fish.
- By determining important substances in FMS, better fish diets, including low-FM or non-FM diets for carnivorous fishes, can be developed.

