32 DECEMBER • WORLD AQUACULTURE • WWW.WAS.ORG salmon with an emphasis on bone health and digestibility. Aquaculture 610:742915. Ebel, J.D., Leroux, S.J., Robertson, M.J and J.B. Dempson 2015. Ontogenetic differences in Atlantic salmon phosphorus concentration and its implications for cross ecosystem fluxes. Ecosphere 6:1-18. Fjelldal, P.G., Hansen, T.J., Lock, E.J., Wargelius, A., Fraser, T.W.K., Sambraus, F., El- Mowafi, A., Albrektsen, S., Waagbø, R. and R. Ørnsrud, 2016. Increased dietary phosphorous prevents vertebral deformities in triploid Atlantic salmon (Salmo salar L.). Aquac. Nutr. 22, 72–90. Fraser, T.W.K., Witten, P.E., Albrektsen, S., Breck, O., Fontanillas, R., Nankervis, L., Thomsen, T.H., Koppe, W., Sambraus, F. and P.G. Fjelldal, 2019. Phosphorus nutrition in farmed Atlantic salmon (Salmo salar): Life stage and temperature effects on bone pathologies. Aquaculture 511, 734246. Hvas, M., Nilsson, J., Vågseth, T., Nola, V., Fjelldal, P.G., Hansen, T.J., Oppedal, F., Stien, L.H. and O. Folkedal. 2022. Full compensatory growth before harvest and no impact on fish welfare in Atlantic salmon after an 8-week fasting period. Aquaculture 546, 737415. Koko, G.K.D., Sarker, P.K., Proulx, É. and G.W. Vandenberg. 2010. Effects of alternating feeding regimes with varying dietary phosphorus levels on growth, mineralization, phosphorus retention and loading of large rainbow trout (Oncorhynchus mykiss). Aquat. Living Resourc. 284, 277–284. Laerm, J., 1976. The development, function, and design of amphicoelous vertebrae in teleost fishes. Zool. J. Linn. Soc. 58, 237–254. Morales, G.A., Azcuy, R.L., Casaretto, M.E., Márquez, L., Hernández, A.J., Gómez, F, Koppe, W. and A. Mereu. 2018. Effect of different inorganic phosphorus sources on growth performance, digestibility, retention efficiency and discharge of nutrients in rainbow trout (Oncorhynchus mykiss). Aquaculture 495, 568-574. National Research Council, 2011. Nutrient Requirements of Fish and Shrimp. The National Academic Press, Washington D.C. Norwegian Seafood Council, 2025. 2024 was the best year ever for Norwegian seafood exports Pandit, A.V., Dittrich, N., Strand, A.V., Lozach, L., Hernández, M.L.H., Reitan, K.I. and D.B. Müller. 2023. Circular economy for aquatic food systems: insights from a multiscale phosphorus flow analysis in Norway, Front. Sustain. Food Syst. 7:1248984, Porn-Ngam, N., Satoh, S., Takeuchi, T. and T. Watanabe, 1993. Effect of the ratio of phosphorus to calcium on zinc availability to rainbow trout in high phosphorus diet. Nippon Suisan Gakkaishi 59, 2065–2070. Sugiura, S.H., Dong, F.M. and R.W. Hardy. 2000. A new approach to estimating the minimum dietary requirement of phosphorus for large rainbow trout based on nonfecal excretions of phosphorus and nitrogen. The Journal of Nutrition 130, 865872. Sambraus, F., Hansen, T., Daae, B., Thorsen, A., Sandvik, R., Stien, L., Fraser, T.W.K. and P.G. Fjelldal. 2020. Triploid Atlantic salmon Salmo salar have a higher dietary phosphorus requirement for bone mineralisation during early development. J. Fish Biol. 97, 137–147. Vorland, C.J., Stremke, E.R., Moorthi, R.N. and K.M. Hill Gallant, 2017. Effects of excessive dietary phosphorus intake on bone health. Curr. Osteoporos. Rep. 15, 473-482. Witten, P.E., Fjelldal, P.G., Huysseune, A., McGurk, C., Obach, A. and M.A.G. Owen. 2019. Bone without minerals and its secondary mineralization in Atlantic salmon (Salmo salar): the recovery from phosphorus deficiency. J. Exp. Biol. 222, jeb.188763. Witten, P.E., Obach, A., Huysseune, A. and G. Baeverfjord. (2006) Vertebrae fusion in Atlantic salmon (Salmo salar): Development, aggravation and pathways of containment. Aquaculture 258:164-172 Witten, P.E.; Owen, M.A.G.; Fontanillas, R.; Soenens, M.; McGurk, C. and A. Obach. A primary phosphorus-deficient skeletal phenotype in juvenile Atlantic salmon Salmo salar: The uncoupling of bone formation and mineralization. J. Fish Biol. 2016, 88, 690–708.
RkJQdWJsaXNoZXIy MjExNDY=