WWW.WAS.ORG • WORLD AQUACULTURE • SEPTEMBER 2023 29 of anoxia as they can reduce (through high respiration rates) or increase (through high photosynthesis rates), concentrations of O2. Acknowledgments This study was funded by Ifremer (2020− 2021), EC2CO HYBIGE (2021− 2022), and by MARBEC. Notes Julie Le Ray, MARBEC, Laboratoire Environnement Ressources LanguedocRoussillon, Station de Sète, Avenue Jean Monnet, CS 30171 – 34203, Sète, France, julie.le.ray@ifremer.fr Annie Fiandrino, Centre Méditerranée – Zone Portuaire de Brégaillon – CS20 330 – 85507, La Seynesur-mer, France. Marion Richard, MARBEC, Laboratoire Environnement Ressources LanguedocRoussillon, Station de Sète, Avenue Jean Monnet, CS 30171 – 34203, Sète, France. Béatrice Bec, MARBEC, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier Cedex 5. References Balzer, W., K. Grasshoff, P. Dieckmann, H. Haardt and U. Petersohn. 1983. Redox-turnover at the sediment water interface studied in a large bell jar system. Oceanologica Acta 6:337–344. Boynton, W.R., M.A.C. Ceballos, E.M. Bailey, C.L.S. Hodgkins, J.L. Humphrey and J.M. Testa. 2018. Oxygen and Nutrient Exchanges at the Sediment-Water Interface: a Global Synthesis and Critique of Estuarine and Coastal Data. Estuaries and Coasts 41:301–333. https://doi.org/10.1007/s12237-017-0275-5 Breitburg, D., L.A. Levin, A. Oschlies, M. Grégoire, F.P. Chavez, D.J. Conley, V. Garçon, D. Gilbert, D. Gutiérrez, K. Isensee, G.S. Jacinto, K.E. Limburg, I. Montes, S.W.A. Naqvi, G.C. Pitcher, N.N. Rabalais, M.R. Roman, K.A. Rose, B.A. Seibel, M. Telszewski, M. Yasuhara and J. Zhang. 2018. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240. https:// doi.org/10.1126/science. aam7240 Derolez, V., N. Malet, A. Fiandrino, F. Lagarde, M. Richard, V. Ouisse, B. Bec and C. Aliaume. 2020. Fifty years of ecological changes: Regime shifts and drivers in a coastal Mediterranean lagoon during oligotrophication. Science of The Total Environment 732, 139292. https://doi.org/10.1016/j. scitotenv.2020.139292 Griffiths, J.R., M. Kadin, F.J.A. Nascimento, T. Tamelander, A. Törnroos, S. Bonaglia, E., Bonsdorff, V. Brüchert, A. Gårdmark, M. Järnström, J. Kotta, M. Lindegren, M.C. Nordström, A. Norkko, J.,Olsson, B. Weigel, R., Žydelis, T. Blenckner, S. Niiranen and M. Winder. 2017. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biology 23:2179–2196. https://doi.org/10.1111/gcb.13642 Le Ray, J., B. Bec, A. Fiandrino, F. Lagarde, N. Cimiterra, P. Raimbault, C.Roques, S. Rigaud, J. Régis, B. Mostajir, S. Mas and M. Richard. 2023. Impact of anoxia and oyster mortality on nutrient and microbial planktonic components: A mesocosm study. Aquaculture 566: 739171. https://doi.org/10.1016/j. aquaculture.2022.739171 van der Loeff, M.M.R., L.G. Anderson, P.O.J. Hall, Å. Iverfeldt, A.B. Josefson, B. Sundby and S.F.G Westerlund. 1984. The asphyxiation technique: An approach to distinguishing between molecular diffusion and biologically mediated transport at the sediment—water interface. Limnology and Oceanography 29:675–686. https://doi.org/10.4319/lo.1984.29.4.0675 FIGURE 7. Schematic representation of the results at the end of the experiment (day 13) for: A) the first experiment from September 9, 2020 to September 22, 2020; B) the second experiment from September 17, 2021 to September 28, 2021. Modified from Le Ray et al. 2023. To conclude, we were able to reproduce an anoxic crisis and analyze its consequences using mesocosms. This study confirms the important role of the benthic compartment and of benthic-pelagic coupling in the oxygen cycle, especially in shallow ecosystems. This study only considered bare sediment. It will be important to study the effect of different benthic communities on the onset of anoxia. Benthic communities could play a determining role in the onset of anoxia as they can reduce (through high respiration rates) or increase (through high photosynthesis rates), concentrations of O2.
RkJQdWJsaXNoZXIy MjExNDY=